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We develop canonical perturbation theory for a physically interesting class of 
infinite-dimensional systems. We prove stability up to exponentially large times 
for dynamical situations characterized by a finite number of frequencies. An 
application to two model problems is also made. For an arbitrarily large FPU- 
like system with alternate light and heavy masses we prove that the exchange of 
energy between the optical and the acoustical modes is frozen up to exponen- 
tially large times, provided the total energy is small enough. For an infinite 
chain of weakly coupled rotators we prove exponential stability for two kinds 
of initial data: (a) states with a finite number of excited rotators, and (b) states 
with the left part of the chain uniformly excited and the right part at rest. 
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Nekhorosbev theory; perturbation theory. 

1. I N T R O D U C T I O N  

The problem of stability in near to integrable Hamiltonian systems has 
been recently investigated by several authors in the light of both the KAM 
and Nekhoroshev theorems. The theory is now quite well developed for 
systems with a finite number of degrees of freedom. For infinite systems 
only few results have been obtained, mainly in connection with KAM 
theory(1 6) (see also ref. 7), while the extension of Nekhoroshev-like results 
has been less considered (8'9) (see also ref. 10). The aim of the present paper 
is to extend Nekhoroshev-type results to infinite systems, the unperturbed 
motion of which has only a finite number of frequencies. The possibility of 
a complete extension of the Nekhoroshev theorem to infinite systems is still 
an open problem. 
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We prove a general theorem that we apply to two well-known models 
which have been extensively investigated and have some physical interest. 
The first one is a modification of the standard Fermi-Pasta-Ulam system; 
precisely, we consider, as in the FPU system, a one-dimensional chain of 
point masses interacting through nonlinear springs, but with alternate light 
and heavy masses. The second model is a system of weakly coupled 
rotators. (11' 12, 2,13,14,1 ) 

The modified FPU model has been numerically investigated in ref. 15. 
The spectrum of the system splits into two well-separated branches, usually 
called the acoustical one (low frequencies) and the optical one (high 
frequencies). The separation between the two branches increases with the 
ratio m2/m 1 of the heavy to the light masses; correspondingly, the whole 
system can be considered as composed of two separate subsystems with a 
small coupling provided by the nonlinearity of the springs. The relevant 
phenomenon observed in the paper quoted above is the following: if one 
starts with some energy concentrated in the acoustic branch, then only a 
small amouont of energy flows to the optical modes, up to a time exponen- 
tially increasing with the ratio of the frequencies. For a finite number n of 
degrees of freedom, such a result could be expected on the basis of a 
theorem proved in ref. 16, but there remains the problem that the analytical 
estimates of the constants of that theorem do not guarantee that the 
phenomenon persists when n--* oo. On the other hand, the numerical 
computations suggest that the phenomenon might be independent of n 
when the specific energy is fixed. In the present paper we prove that the 
phenomenon persists in the limit n ~ 0% but with the restriction that the 
total (and not the specific) energy be fixed. In our opinion, the gap between 
the numerical indication (fixed specific energy) and the present theorem 
(fixed total energy) can hardly be filled on a purely dynamical basis, but 
requires perhaps the use of a statistical argument: we shall come back to 
this point later. We point out that our approach differs from Nekhoroshev's 
in that we do not try to prove that the single action variables of the system 
are frozen: such a result would be impossible, due to the fact that the 
optical modes form an almost completely resonant system. Instead, we only 
bound the exchange of energy between the two subsystems of the optical 
and of the acoustical modes. 

Concerning the system of rotators, we consider a chain with a long- 
range interaction. We prove that the theorem of Nekhoroshev, ensuring the 
freezing of the action of each rotator, can be extended to an infinite chain 
provided one considers the particular class of initial conditions which 
correspond to the so-called localized states. Precisely, we consider initial 
conditions close to a state in which only a finite number of rotators have 
a nonvanishing action, and prove that such states are stable up to times 
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which increase exponentially with a power of the inverse of the size of the 
perturbation. 

As a matter of fact, we deduce all these results from a general formula- 
tion of a Nekhoroshev-like theory for infinite systems, which, by the way, 
is completely coordinate independent. Let us explain in a few words the 
key points of our theory. In extending a Nekhoroshev-type theory to 
infinite systems one has usually to tackle two main difficulties: on the one 
hand, one has to build up algebraic and analytical tools, like function 
spaces, norms, and so on, which are needed to produce estimates; on the 
other hand, one is confronted with the difficulty due to the presence of an 
infinite number of frequencies. 

We solve the first problem by introducing an abstract scheme which 
allows us to develop a normal form theory for Hamiltonians defined on a 
generic Banach space, obtaining in particular estimates independent of the 
dimension of the space. 

The difficulty connected with the infinite number of frequencies is 
instead much harder, because the usual diophantine estimates contain a 
very strong dependence on the dimension of the space. In ref. 1 this 
difficulty was overcome by assuming a strong decay of the interactions, 
which allowed a weaker formulation of the diophantine conditions. Here, 
instead, we restrict our attention to particular states of the system, roughly 
characterized by the fact that only a finite number of frequencies is actually 
relevant. More precisely, the general abstract theorem we prove is con- 
cerned only with the neighborhood of a periodic orbit, so that we do not 
need diophantine-like conditions at all. This constitutes the so-called 
analytic part of Nekhoroshev's theorem and is actually enough for the 
application to the FPU-like system. The case of rotators requires also the 
so-called geometric part of the Nekhoroshev theorem. Here, we exploit the 
idea of Lochak (1~ that, in finite dimensions, all the frequencies are close, 
in some sense, to a complete resonance. In the case of an infinite system 
this is no longer true in a global sense, but holds for any state in which all 
rotators but a finite number are initially at rest; thus, Nekhoroshev's result 
can be extended to a suitable neighborhood of such localized states. 

The paper is organized as follows. In Section 2 we recall the FPU-type 
model and formulate our result for such a system. In Section 3 we do the 
same for the model of rotators. In Section 4 we state our general results in 
abstract form. Section 5 contains the proof of the abstract theorems. 
Section 6 contains the proof of the result on the FPU-type model, deducing 
it from the abstract theory. Section 7 contains the proof of the analytic part 
of the theorem for the system of rotators. The geometric part for the same 
model is isolated in Section 8, because it is given in a general form, 
essentially independent of the specific model considered here. 
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2. FREEZING OF H IGH F R E Q U E N C I E S  IN AN F P U - T Y P E  
M O D E L  

We consider a one-dimensional chain of an even number of particles 
interacting through anharmonic springs; the ends of the chain are fixed. 
The Hamiltonian of the system is 

2 n + l  1 
H(y, x)= Y--~--+ Y 1 "+ j71 5k(xj-xj-1)2+j=l y" q,(xj-xj  1) (2.1) j=12mj 

where yj, xj are conjugate variables representing, respectively, the momen- 
tum and the position of the particles, ~o: R ~ R is an analytic function with 
~o(0)=~o'(0)= ~o"(0)=0 (primes denote differentiation), k is a positve 
constant, and mj are the masses of the particles. The condition of fixed ends 
is x0 = x,  +1= 0. As a variant to the original FPU model, we consider the 
case in which the masses of the particles are alternate and very different: 

m l  
mj=mj+2, - - 4 1  

m2 

It is well known that this leads to a frequency spectrum (of the linear part 
of the system) with two disjoint branches. In fact, the spectrum is given by 

(oo+)2:=k ml+m2+-(m2+mz+2mlm2c~ (2.2) 

mlm2 

where 

~l  n 
f l t : = n + l ,  1~<l<~ (2.3) 

Here and below, we use superscripts minus and plus to denote quantities 
referring to the acoustical and optical branches, respectively. Thus, we have 
a set of low frequencies 09 -=  (~o 1 . ,  co~72) ranging from zero to COma x, 
given by 

k 
" " .  u~ - ( ( D - ' a x  }2 = 2 - -  

m2 

and a set of high frequencies ~o + = (co+,..., a~2) ranging from + to + (-0mi n ( D m a  x 

given by 

k + 2 (co=i.) = 2 - - ,  
m l  

( ( . 0 m a x )  = 2k 
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The relevant fact here is that the ratio + - (Dmin/O)ma x of the lowest optical 
frequency to the highest acoustic one increases with the ratio m2/ml, so 
that it turns out to be very large in the case m I ~ m2; at the same time, the 
ratio + + + (e)ma x -  COmin)/COmi n goes to zero, so that the optical branch tends to 
be completely resonant. 

The first step consists in introducing normal modes for the quadratic 
part of the Hamiltonian. The coordinate transformation to normal modes 
is given by 

2 1 2 k -  Icos fill Xj = 1=1 ( F / +  1) 1/2 ~ ( ~ 7 2  t 
+ 

sin(jill) 
• [m~ + m~ + 2mlm2 cos(2/~t)] 1/4 q# (2.4) 

Here, the label + under the sum means that the sum has to be extended 
to both the acoustical variables q -  and the optical ones q+. The coor- 
dinate transformation has to be completed to a canonical transformation 
(p, q) ~-~ (y, x) in the obvious way. In the new variables H can be written 
in the form 

where 

H(p, q)=h-(p- ,  q-) + h +(p +, q+)+ Hpert(q ) 

n/2 
he(p+_,q+):= ~ t ,  +2 5tP~ +c~ +2) (2.5) 

/=1  

are the acoustic ( h )  and the optical (h § ) harmonic energies, while 
Hpert(q ) is a complicated function of q providing the interaction between 
the two subsystems; the form of this function is not essential here. 

We also introduce the mean (quadratic) value of the frequencies of the 
optical branch, defined by 

((Dmin) = k  -]- ( 2 .6 )  ( ( / ) m a x ) +  + 2 

e)2 := 2 \ m l  m2/ 

We point out that, although we have written a Hamiltonian function 
for a system with a finite number n of degrees of freedom, all the operations 
performed so far are meaningful also in the case n = oe; more details on 
this limit will be given in the technical Section 6. 

As explained in the Introduction, our aim is to bound the exchange of 
energy between the optic and acoustic branches. The corresponding result 
is stated in the following theorem. 
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Theorem 2.1. Consider the Cauchy problem for the Hamiltonian 
system (2.1) with initial data (pO, qO). Assume that the function q~ can be 
extended to a complex analytic function on a complex sphere of radius p .  
around the origin, for some positive p , ,  and that there exists a positive 

constant  Y such that 

I~o(x)l~l~lxl  3, I~0'(x)[ ~ ~-Ixl 2, Vx~C with I x l < p ,  (2.7) 

Define the total harmonic energy go of the initial datum as 

n/2 
E( _0+ go:= ~ �89 ~,_)2+(co_+)2(qO_+)2] 

/=I 
_+_ 

and the (dimensionless) parameter # as 

# := 3327 ~/2 ~ o  q- 2 9 COmaxc0 (2.8) 

where co is given by (2.6). If # < 1, and if 

then one has the estimate 

(2.9) 

[h+(t)-h+(O)[ <~# 
~o 

with h + given by (2.5), for all times t with 

I tl ~< co---~ exp 

Let us add a few comments. In plain words, the result is the following: 
if the total energy of the initial datum is small and if the ratio CO/COmax 
is large, then the exchange of energy between the optical and acoustical 
branches is small compared to their total energy, up to a time growing 
exponentially with the inverse of the perturbation parameter #. Now, as it 
stands, the result looks meaningless in the thermodynamic limit, where one 
should be able to consider a fixed specific energy, instead of the total one; 
furthermore, we point out that we cannot control the energy of each mode, 
either acoustic or optical, but only the exchange of energy between the two 
subsystems. Concerning the second point, we remark that both subsystems 
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become strongly resonant in the limit n--* oe; moreover, the optical fre- 
quencies tend to become equal for p --, 0. Thus, one cannot expect that the 
harmonic energies of the single modes are conserved, and in particular the 
internal sharing of the energy of the optical subsystem cannot be bounded: 
this was put into evidence by numerical simulations in ref. 15. Concerning 
the first point, namely whether one has a similar freezing for fixed specific 
energy, the problem is the following: the control of the sharing of energy 
depends on the maximal energy that can be concentrated on a single 
particle of the system; thus, by dynamical considerations one cannot 
exclude a priori that all the available energy can concentrate on a single 
particle for a long time, so that our result could hardly be improved. We 
believe that such a situation could possibly be excluded on the basis of 
statistical considerations. 

3. STABILITY OF LOCALIZED STATES IN A SYSTEM OF 
WEAKLY COUPLED ROTATORS 

We consider an infinite chain of weakly coupled identical rotators, and 
study the stability of states in which only a finite number of rotators is 
excited. 

As a general model we consider the case of long-range interaction 
among the rotators, as described by the Hamiltonian 

1 (3.1) 
H(J, ~b) := ,~z 21+ ~ , �9 z I I - j l  

l # j  

where J, ~b are canonically conjugate variables, I is the momentum of 
inertia of each rotator, and e is a small parameter with the dimension of an 
energy. 

A simpler model, considered by many authors, is that of rotators with 
a finite-range interaction, in particular limited only to first neighbors. The 
Hamiltonian in such a case is 

hn(J' ~b) '= ,~z  ~/ t+e  ~ [1 -cos(~b/-  ~b, 1)-] (3.2) 
l ~ Z  

As said in the Introduction, our aim is to prove that, if we consider 
initial data with finite total energy, and with the additional hypothesis that 
only a finite number of rotators have angular momentum significantly 
different from zero, then such a situation changes only a little, up to times 
growing exponentially with the inverse of the size of the perturbation. 

To prove our result, we need a suitable Hamiltonian framework for 
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our infinite system. In fact, the two different models require a different 
framework with regard to the characterization of the phase space. In 
particular, this makes all the technical estimates quite complicated for the 
long-range case with respect to the finite-range one. In view of this fact, 
and to avoid unnecessary technicalities, we give a complete discussion of 
the finite-range case. At the end of the section we also include a brief 
discussion of the long-range model. Proving the results for the latter case 
is just a matter of applying again the same scheme as for the finite range: 
this just requires more time to work out all the estimates. 

We give now the definitions of the phase space and of the symplectic 
form for the finite-range case. 

The phase space N is defined as 

:=/2 x 32~( J ,  0) (3.3) 

where l 2 is the space of square summable sequences, and A 2 is the space of 
the sequences 0 = {0;} such that 

Y~ (0;-  0;-1)2 < 
l~Z 

The space ~ coincides in fact with the set of states with finite energy. With 
this definition, the Hamiltonian (3.2) turns out to be analytic on ~ (see 
Section 7). If (J, 0) e N is a point of the phase space, we define its norm by 

I J;L 2 , 1 

II(J,O)ll~ : = ~ - - ~ - + ~  ~ ~10;-0;_112+2~10o12 
leZ leZ 

(3.4) 

On the phase space we define the symplectic form f2 in the natural way, 
namely by 

~'~((J~ 0), (j1, 01)):= E J l O ] - J ~ O l  (3.5) 
leZ 

We remark that the symplectic form is not defined on the whole ~ ,  but 
only on a subspace of it. Actually, this is enough for our purposes because 
we can extend the usual methods of Hamiltonian mechanics to such a 
situation: the details can be found in Section 4. 

To state our theorem we also need to introduce a quantity which 
measures, in a suitable sense, the distance between two states. The problem 
is that the distance induced by the norm above is too strong, because it 
does not take into account the fact that the 0's are angles. For  instances, 
H (J, O)H = C means that the differences between nearby angles are bounded; 
this is clearly incompatible with the dynamics, since at least some (a finite 
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number) of the angles should be allowed to rotate freely with respect to 
their neighbors. Indeed, this happens already in the case e = 0. In order to 
consider also these cases, we take as a natural substitute of the norm the 
energy of the system, the function hR(J, ~b) defined by (3.2). Remark indeed 
that the condition hR(J, ~b) ~< C with C > 2~ allows the difference between a 
finite number of nearby angles to be arbitrarily large. As a norm induces 
a distance, our substitute of the norm induces a substitute of the distance, 
namely the function 

hR(( J, O)- ( j l  01)) 

= Y, ( j ,  _ j )2 ,~z 2I +e lez2 {1-c~ 1)]} 

Besides the remark above, we stress that although this function does not 
satisfy the formal properties of a distance, it gives a good characterization 
of close states; indeed, if the value of the function is zero for two given 
states (J, ~b) and (j1, ~bl), then all the corresponding actions coincide. 

We give now a formal statement of our result. 

T h e o r e m  3.1. Consider the Cauchy problem for the Hamiltonian 
system (3.2) in the phase space (3.3). Considering a finite set of indices S 
with cardinality n, take any sequence J =  {Jt}t~z with support S, and 
denote by ~ the maximal frequency corresponding to J, namely 

g : = m a x  ~ 
t~s ( I J  

Define also the dimensionless parameter/2 by 

.__( g ~1/2 

Then there exist positive constants # ,  and C1, depending on n but inde- 
pendent of all the parameters of h R and of all properties of J, such that the 
following holds true: if 

/ ~ < ~ ,  

then, for all initial data (jo, ~bo)e ~ close enough to J, precisely satisfying 

hR( ( J ~ 0 ~ -- ( J, 0)) <~ �88 n2e (3.6) 

one has that the corresponding solution (J(t), (b(t)) exists and remains 
close of J, and precisely satisfies 

hR((J(t), (~(t))- (J, 0 ) )~  CII~2Ft 2/" 
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for all times t with 

I tl ~< 48eg----~n exp 

Possible values of St, and C1 are 

1 
St, = 25,33,27n(, 1)/2, C1 =313n 

We remark that the class of initial data allowed by (3.6) contains 
states with angles asymptotically well aligned. 

As outlined in the Introduction, we prove this theorem by using the 
rational approximation technique introduced by Lochak. According to this 
technique, we prove a stability theorem, in Nekhoroshev's sense, for a 
neighborhood of a periodic orbit, and then use a number-theoretic argu- 
ment to extend the result to the whole phase space in the case of a finite- 
dimensional system, and to suitable neighborhoods of localized states in 
the case on an infinite system. The local result concerning a neighborhood 
of a periodic orbit of the unperturbed system is given by the following 
theorem; its proof is in fact the main step we need in order to prove 
Theorem 3.1. 

Theorem 3.2. Consider the Cauchy problem for the dynamical system 
with Hamiltonian 

j2 
H(J~ (/)):= ~ colJl~-l~Z ~I~-~ ~ I-l--cos(~;--~/-1)] 

l~Z l~Z 
(3.7) 

Assume that co = {co;};~z is completely resonant, i.e., there exist v E ~ and 
{k;};~z e ZZ\{0} such that 

COl = klv 

Denote by S* the set 

S * : = { i ~ Z : c o i r  i 1} 

and assume that its cardinality is finite and equal to n*. For  any initial 
datum ~0 = (jo, 06o) ~ ~ ,  define 

(3.8) 
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where h R is again the function defined in (3.2); define also 

( ~ ,~/2 
, ,  :=  + *) 

If 

(3.9) 

# < 1 (3.10) 

then the solution (J(t), ~b(t)) of the Cauchy problem exists, and one has 

for all times t satisfying 

where 

hR(J(t), O(t)) ~ f12 e_ (3.11) 
2 

ltl ~< 12e II&oH exp 

) 1/2 
/l&ol[ := 41C0ol2+ Y~ I~oj--coj_~l 2 

yes* 

The Hamiltonian (3.7) is nothing but (3.2) expanded around the point 
J =  Ico. We point out that the theorem covers also cases of infinite initial 
energy; for instance, it covers the case of a left chain with initial data co t = v 
for l < 0 interfaced with a right chain with initial data co t = 0 for 1 >~ 0, with 
nonvanishing specific energy. The reduction to the case of finite energy 
considered in Theorem 3.1 is due to the application of the number-theoretic 
result referred to above. 

Before closing this section, we indicate how to modify the definition of 
the phase space in order to deal with the long-range case. The whole game 
is based on the introduction of a suitable norm, in such a way that the 
phase space is as large as possible, and the Hamiltonian (3.1) is analytic. 
To start with, we consider only the angle variables, and introduce the 
family of functions (t~l)k,~, depending on a positive integer parameter k, 

With this, we introduce the further function 

(I~15~,~ := Sup(i~l  )k,~ 
k~>2 



580 Bambusi and Giorgilli  

We shall denote by A ~'~ the set of infinite sequences ~b = {~bj}i~ z such that 
( I~b[ ) ~,~ < oe. Now we define the phase space N as the set of the sequences 

(J, ~ ) f f l2 •  ~ 

equipped with the norm 

II(J,~)il2 : = ~ ~+28(1~1 )~ ,  _+_2el~ol 2 2 
tEz 2I  

With these definitions, Theorem 3.1 can be proved, with slightly different 
numerical constants. Similarly, a result of the kind of Theorem 3.2, with a 
restriction to states of finite energy, can be proved. In particular, we are 
still unable to extend the result to cases of initial data with infinite energy. 
The proof  is essentially the same as in the case of finite range; one has just 
to add the proof  that the space l 2 is continuously embedded in A ~~ 

4. ABSTRACT PERTURBATION THEORY 

In this section we adapt  the usual symplectic formalism for infinite- 
dimensional spaces, in order to obtain a framework suitable for perturba- 
tion theory. Then we develop a perturbation scheme leading to a general 
normal form theorem. Precisely, we shall concentrate on three points: 
(i) the extension of the usual methods of Hamiltonian mechanics in order 
to be able to handle our model problems; (ii) the introduction of suitable 
domains, which are needed for quantitative perturbation theory; and 
(iii) the characterization of the general class of Hamiltonians we can deal 
with. 

Concerning the symplectic space, we make a construction which differs 
a little from the usual ones (as common references see, for example, refs. 18 
and 19). In fact, we follow here an approach that we consider more suitable 
for perturbation theory, almost in the same spirit of the work of Kuksin(7); 
actually, our scheme is more general: besides our system of rotators, it also 
allows one to deal, e.g., with the wave equation in unbounded domains 
in R n. 

Consider a Banach space N, and assume we are given a bilinear 
skew-symmetric form f2 on a domain Dff2) c N x N. We assume moreover 
that there exists a linear subspace ~o c N with the following properties: 

(~) D(f2) contains CgoXN, and s is a continuous linear 
functional on N for all x E %.  

(fi) f2 is nondegenerate on N XCgo, namely, if y E N  is such that 
~2(x, y) = 0 Vx e ego, then one has y = 0. 
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We shall call (~,  %,  O) a symplectic space. For  the functional (2(x, -) we 
shall also use the standard notation of interior product: x ~ / 2  := O(x, .). 

We consider the following norm on (go: 

I[xll~ := Sup I~(x,y) t  
ILYlI2~,- 1 

which is well defined by axiom (~), and is a norm by virtue of the axiom 
(/~); then, we complete % with respect to this norm, thus obtaining a 
Banach space that we shall denote by ~-. Notice that, by axiom (~), (2 can 
be extended to a continuous bilinear functional on ~ • ~ .  

The usual definition of canonical transformation can be generalized to 
the present case: a diffcrentiable map ~-: ~ ~ ~ is said to be canonical in 
case (i) the differential Y-'(() satisfies ~- ' (~)(~ c~ ~ ) =  ~ c~ ~ for all (E ~ ,  
and (ii) O(Y'(~)x ,  ~-'(()y)=O(x,y) for all x e ~  and all y e ~ n ~ .  

We introduce now the definition of symplectic gradient (or Hamiltonian 
vector field). We shall consider two different cases, which cover all the 
situations we shall encounter. As a first case we consider a function f :  

-~ ~ which is of class C1; in this case we define its symplectic gradient 
Vaf: ~ ~ ~ by 

s Vxe~  

provided it exists. As a second case we consider a linear function g: ~ D 
D(g)--* ~, and assume that its domain D(g) contains %;  then we define 
Vag E ~ w ~ as the constant function satisfying 

~(V'~g, x) = g(x), Vx E % 

provided it exists. The symplectic gradient of a function f at x will also be 
denoted by Xy(X) (=VOf(x)) .  

Finally, we introduce the Poisson bracket. We consider a function 
f e  C~(~) and a function g with the property that VOg exists and satisfies 
V~ag: ~ - + ~ ;  the Poisson bracket {f,g}(~) is defined by 

{f, g}(~) := f ' (~ )  V~ (4.1) 

where f(x) is the differential of f at x (we shall use the symbol d only for 
the operator of exterior differentiation acting on forms). We remark that 
the definition can be applied also to the case f e  C~(~, 5 e) with 5 a a 
generic Banach space, because the Poisson bracket is in fact the Lie 
derivative of f with respect to the Hamiltonian vector field Vag. We shall 
make use of this extension. 

In order to better illustrate our scheme, let us now add a few 
examples. 
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(i) Wave equation on a bounded domain K c  R". It is well known 
that this is a Hamiltonian system with Hamiltonian function 

�89 fK [P(X)~ - ~(x) ~u(x)] d"x 

In this case we put ~ = L 2 ( K ) x H l ( K ) ~ ( p ,  u) (where H 1 is the usual 
Sobolev space), and % - - N ;  the symplectic form is, as usual, 

(2((pl , ul), (p, u)) :=fK [PI(X) u(x)--p(x) ul(x)] d"x 

It is now an easy matter to check that one has ~ = H -1  x L 2. 

(ii) Wave equation on unbounded domains of Nn. The Hamiltonian 
and the symplectic form are the same as in the previous example. The 
major change concerns the definition of the spaces N and %. The natural 
choice for ~ is the space of states with finite energy. However, one has to 
remark that, on the one hand, the symplectic form is defined on L2x  L 2, 
but, on the other hand, N is not contained in L2x  L 2. So, the symplectic 
form turns out to be only densely defined on N. One can take for % the 
space C~ of infinitely differentiable functions with compact support. For  
more details on a situation of this kind see ref. 9. 

(iii) The system of rotators of Section 3. The space ~ is given by 
(3.3), and the symplectic form by (3.5). The space % can be defined as 
d x l 2, where ~r is the set of the sequences with finite support. Notice that 
in this case % is not dense in ~.  

We come now to the definition of the domains. With reference to the 
symplectic space (N, %,  f2), consider first the complexifications Nc  and 
~ c  of N and ~ ,  respectively. We consider a domain ff c ~ ,  and define its 
extension fiR, a t  Nc  with parameters R > 0 and d <  1 as the union of open 
complex balls B((, R(1 - d)) c ~ c  of radius R(1 - d) centered at any point 

of ~q; formally, 

~r := U ~(~, R(1 -- d)) 

Finally, we characterize the general Hamiltonian systems to which we 
shall apply our perturbation scheme. We assume that the Hamiltonian can 
be given the form 

H(~) -- h~o(~) +/~(~) + f ( ~ )  (4.2) 

where ho~ will be considered as the unperturbed part of the Hamiltonian, 
while/~ and f will be considered as perturbations. 
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The most important property that we assume for the unperturbed 
Hamiltonian h~ is that it gives rise to a periodic flow. This looks like a very 
strong hypothesis, in consideration of the fact that one usually considers an 
integrable Hamiltonian with a quasiperiodic flow. However, as shown by 
Lochak, a quasiperiodic Hamiltonian can be approximated by a periodic 
one in virtue of Dirichlet's theorem on the approximation of irrational 
numbers; this makes the periodic case sufficient for our purposes. The 
extension to the quasiperiodic case with a finite number of frequencies is 
just a technical matter. We also assume some technical hypotheses on h~, 
and in particular on the flow generated by it. 

A first hypothesis is the following one: 

1. The symplectic gradient VOho~ exists, and generates a continuous 
flow ~t on ~c .  

A second group of hypotheses concerns the properties of the smoothness of 
the flow qst: 

2. (i) The map ~,  is of class C1(~ c, ~ c )  for every fixed t; moreover, 
denoting by ~b't(ff ) its differential (with t fixed) at if, we assume (ii) 
that r c~ f f ) c  c (2  c~ f f ) c  and (iii) that the map ff ~-~ ~b't(~ ) 
is analytic as a map from ~ c  to C1(~, ~).  Finally, (iv) for every 
u e ( ~ c ~ )  c, every x e ~  c, and all t e ~  one has 

~(~'t(~)u, ~',(Ox) =~(u, x) 

3. The time derivative d~b~(~)/dt exists for every ~ e D, where D is a 
dense subset of ~ c  which is invariant for q~. 

We remark that all these hypotheses are trivially satisfied in the finite- 
dimensional case, due to the smoothness and to the periodicity of the 
Hamiltonian h~o. In the infinite-dimensional case they could also be 
deduced from suitable smoothness hypotheses on ho~ and its symplectic 
gradient. However, we did not try to isolate the best hypotheses needed for 
this, since the properties above are actually enough for our purposes. 

The fourth hypothesis is nothing but a natural request on the choice 
of the domain ~r 

4. For every d <  1 the complex domain ffR, d is invariant for ~b,. 

Finally, we add a last technical hypothesis on the norm of r 

5. For every t e ~  we have [lr 1. 

The latter hypothesis could be replaced by ]lOS't(Oll~,~<C for some 
positive C. 

822/71/3-4-15 
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We come now to the perturbation. We assume that both/~ and f are 
functions of class C ~, and that their symplectic gradients are well defined 
and analytic. Furthermore, we assume that h commutes with ho, namely 
that {h~o, i}  =0.  In practice, the relevant property is that/~ is already in 
normal form with respect to h~o; this is the case, for instance, when ho, and 
/~ represent two separate subsystems interacting through the coupling 
term f. 

According to the usual perturbation schemes, we first give a theorem 
stating that the Hamiltonian can be given a normal form up to an 
exponentially small remainder, with explicit quantitative estimates. 

Theorem 4.1. On the domain fq as above, consider a real Hamiltonian 
function H:  ~ ~ ~ which can be decomposed into the sum of three func- 
tions ho~, /~, f as in (4.2), with /l and f of class C~176 and such that 
their symplectic gradient is defined for all x e fq. Assume that the flow q~, 
generated by h~o is periodic with period T := 2rc/~o, namely 

~ , + V =  ~, ,  V t e R  

and that ho~ satisfies hypotheses 1-5 above. Concerning /~, assume that 
{h~,/~} = 0. Fix a positive parameter R and assume also that VQ/~ and V e f  
can be extended to complex analytic functions from ~R,o to Nc, and that 
the inequalities 

_ 1 

1 Sup I l V a ~ ( ~ ) l l ~ 0 ,  -- Sup [IVaf({)ll~<o)/ 
R ~e~R,o R ~e~R,o 

hold for some constants e)o and COy. Let 0 < d ~< 1/4 be a positive parameter 
and define the pure number 

(o0 ) 
# := -d- ere ~ (4.3) 

Then the following statement holds true: if /~ < 1, then there exists an 
analytic canonical transformation 3-: fqR,2d~ fqR.a, with Y'(NR,2a)=fqR,3a, 
such that H o Y- has the form 

H(J( r  = h~(r + a(r + Z(r + ~(r (4.4) 

where: 

R1. 

R2. Sup IIVa~(~)ll~.~<3(e+ 1)~o)/exp - 
s ~R,ad 
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R3. 
have 

For any analytic g: fCR, o --* S, with 5 ~ a generic Banach space, we 

Sup Ig(~)-g(Y({))l]s~< 2~(e+ 1)cof Sup ]lg(~)Ns~ 

We use now the normal form Theorem 4.1 in order to bound the 
variation of h~ up to exponentially large times. This is given by the 
following result. 

Corol la ry  4.2. Under the same hypotheses of Theorem 4.1, and 
with the additional assumption that h~o can be extended to a complex 
analytic function on ~R,a, the following holds true: along the solutions of 
the Cauchy problem of system (4.2), one has 

]h~(t) - h~o(0)] ~< 6~(e + 1 ) cox Sup Jh~(~)J (4.5) 
d co ~R,a 

for all [tl ~<min(To, T,), where To is the escape time of the solution from 
the domain NR,2a, and 

2~ 1 
T,  = - f ~ p  exp ( ~ )  

A stronger form of Theorem4.1 can be given in case some further 
hypotheses on fl and f are assumed. In this case, an improved and 
qualitatively different formulation of Corollary 4.2 can be obtained. Apart 
from aesthetic considerations, this is relevant because we can remove the 
analyticity hypothesis on h~, just requiring analyticity for the symplectic 
gradient Vah~. This improvement, which could seem minor, allows one to 
deal with the interesting case of states of infinite energy in the model of 
rotators. 

T h e o r e m 4 . 3 .  Consider the Flamiltonian system (4.2) satisfying all 
the hypotheses of Theorem 4.1. Assume also that both h and f can be 
extended to analytic functions on the domain ~r and that there exist 
constants Eo and E such that the inequalities 

Sup Jh(~')f ~<Eo, Sup [f(()] ~<E 
(c~R,o ~e ~R,0 

hold. Define the constant 

E0 co:-) 1 coj e+e Tu  
E * : = m a x  E, 12Or+co 0 
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Then, denoting by Y- and ~,  respectively, the canonical transformation 
and the remainder as in Theorem 4.1, one has the following estimates: 

R4. Sup Ih~o(~)- h~(Y(~))[ <~ 2E* 
~ E ~R,2d 

R5. Sup I~(ff)l ~< 4eE* exp ( -  ~)  

The corresponding form of Corollary 4.2 is the following. 

Coro l la ry  4.4. Under the hypotheses of Theorem4.3, with the 
additional assumption that 0 < d ~< 1/6 and that that VOh,o can be extended 
to a complex analytic function o n  (~R,3a, and that h~ is densely defined in 
c~. Then along the solutions of the Cauchy problem of system (4.2), one has 

I/~(t) +f(t)  -/~(0) - f(0)l ~< 6E* (4.6) 

for all Itl <~min(To, T,), where To is the escape time of the solution from 
the domain fr and 

d Sup [[Vah~(~)ll exp 
T, =~ee ~ ~ ~R.3~ 

We omit the detailed proof, giving just the essential point. First, one 
considers initial data belonging to the domain of ho~, which is dense in ~;  
this allows one to prove Ih~o(t)- ho~(0)~< 6E* over the same time interval, 
for these initial data. Then, using conservation of energy, one proves (4.6) 
for the same set of initial data. Finally, using the density of the domain of 
ho~ and the continuity of/~ + f on ~,  one concludes the proof. 

5. A B S T R A C T  T E C H N I C A L I T I E S  

The scheme of the proof of Theorem 4.1 is essentially the same used, in 
a finite-dimensional context, in ref. 16 (see also ref. 9). In fact, the scheme 
used there is based on a recursive algorithm, equivalent to the Lie trans- 
form, to perform canonical transformations and to give the Hamiltonian a 
suitable normal form. The algorithm can be efficiently used for quantitative 
estimates. One has to introduce norms for functions which dominate the 
sup norm, give estimates, in terms of the norms above, for Poisson 
brackets and for the solutions of the homological equation (5.12). The 
extension to the case of an infinite system requires a clever choice of the 
phase space, and so also of the norms, and a careful implementation of 
the averaging method in order to give the estimate for the solution of the 
homological equation. With these elements, the proof of Theorem 4.1 can 
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be achieved by a straightforward application of the scheme of ref. 16. In 
view of these remarks, we report here only the original elements of the 
proof, namely the choice of the norms, the estimate of the Poisson bracket, 
and the estimate of the solution of the homological equation. Concerning 
instead the proof of Theorem 4.3, some additional estimates are necessary, 
which are reported below in explicit form. 

We begin by briefly outlining, at a purely formal level, the precedure 
used in order to put in normal form the Hamiltonian (see ref. 20 for more 
details). We first recall the method we use in order to perform a canonical 
transformation. 

We consider a sequence {X~},~>I of functions on the phase space N, 
which will be called a "generating sequence," and define a corresponding 
linear operator T x acting on functions by 

where 

r g:= Y gr (5.1) 
r~>O 

r 

go:=g ,  gr Z l{z,,gr ,}, r~>l (5.2) : = /  - 
= 1  F 

Letting this operator act on the identical function on the phase space, we 
obtain a transformation synthetically written as 

= := 

This transformation turns out to be canonical, and moreover the following 
relevant identity holds/2~ 

(Txf)(~') = f(Tz~')  

We look now for a finite generating sequence Z = {Zs}~= 1 such that the 
transformed Hamiltonian TzH is in normal form up to a small remainder 
~(r), of order r in some small parameter to be determined; precisely, we ask 
the transformed Hamiltonian to be of the form 

H(Tz~)=(TxH)(~)=h~(~)+[~(~)+Z(~)+~(r)(~ ) (5.3) 

where Z is in normal form with respect to ho~, i.e., we have {ho~, Z} = 0. 
In order to find the equations for )~, we denote Txho,=52s~ohs, 

Z r Zs with Z~ of order s, and T~h=Zs>~O~, Txf=Y.s>~ofs, and = Z ~ = I  
consider h~, h~, and f~ of order s, s +'1, and s + 1, respectively. So, equating 
terms of the same order in (5.3), we obtain for Xs and Z~ the following 
equations: 

{ho~,Zs}+Z~=~, l<~s<~r (5.4) 
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with 

~Jl =f  
s - -1  1 

~Js =-- hs 1-}- l E 1 s  { )(.l, hs_ l } + f 1, 2~s~r  
(5.5) 

These equations can be recursively solved, thus giving the generating 
sequence )6 

Before coming to quantitative estimates, we give a proposition on 
Poisson brackets. 

Propos i t ion  5.1. Let f ~  C~~ and g e C~(N) be such that their 
symplectic gradients V~ Vag exist and belong to C~(N, ~). Then 
VO{f, g} exists, belongs to C~(N, N), and satisfies 

Va{f, g} = [Vaf, Vag] (5.6) 

ProoL First, we prove that if f s  C~(N) is such that its symplectic 
gradient is defined for all x ~ N, then one has VOfa C~(~, ~). To this end, 
consider the map W ~ x ~ x l f 2 e N * ;  due to the definition of the norm 
of ~ ,  it is an isometry, and, moreover, by axiom (fl) it is invertible on its 
range. So, its inverse map is a linear continuous map. The differentiability 
of Vaf as a map from ~ to ~ is an immediate consequence of this fact. 
So, one has 

d(~xsg) = Sxf(dg) (5.7) 

where we denoted by 2'x s the operator of Lie derivative with respect to the 
vector field Xf =-Vaf; the form above coincides with 

&s(xg l Q ) =  zx~x~ A o  + x .  A &~a  

(for this kind of calculation see ref. 21). Notice that this expression is 
meaningful since XfeCI(N,N)c~CI(N,.,~). Now we show that, if 
~ l a ~ m ~  and ~2e~,  then 5~ f2(~1, ~2)=0. Notice first that, using the 
definition of derivative, one has 

( (X l O)' (x),7, ~> = (o; X'(x),7,~) 

VXaCI(N, COn CI(N, ~-), t /aN, and ~ e N c ~  or r /aN c~ ~-, and ~aN;  
here we also denoted by (f2; ~, t/) the value of the form C2 on the vectors 

and r/, and by a prime the derivative of the map. So, we have (21) 
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= (r2;X)(X)~l, ~ : ) -  ( o ; X ) ( x ) ~ : ,  ~ )  

= ( (Jlrf ~ ~(~)' (x)~1 ; ~2) -- ( (Jizf --~ ~e'2) , (X)~2; ~1 ) 

= (d(Xf _j Q)(x);  ~1, ~2) = (ddf(x); ~1, ~2) = 0 

So, since for all x ~ ~ one has Xg(x)~ .# c~ J~, it follows that 

d{f, g} = [Xf, G ]  ~ Q 

From this one immediately gets (5.6). The smoothness statement on 
Va{f,  g} is an easy consequence of this formula. | 

Now we introduce the norms needed in order to complete the scheme 
above with quantitative estimates. Given an analytic function g: ~R,u ~ 5P 
(Y being a Banach space, and NR, a the domain defined in Section 4), we 
define its norm Nd(g) by 

Na(g) := Sup IIg(C)ll~ (5 .8 )  

If 5 p = C it is useful to define also the norm 

1 
NV(g) :=--  Sup IlVag(~)jl~ 

R ~ ~ ~R,,~ 
(5.9) 

which measures the size of the Hamiltonian vector field generated by g. The 
Poisson bracket between two functions is estimated by the following 

Lemma 5.2. Let g: ~R,0 ~ ~ be an analytic function on (r and let 
gl:  ~R,o ~ C be another analytic function such that Veg~ exists, is analytic 
as a function from ~R,a to ~ ,  and satisfies NV(gl)< oo; then {g, g~} is a 
analytic on NR, a and the following inequality holds: 

Na( { g, g~}) <~lNo(g) NV(g~) (5.1o) 

Moreover, if g is such that Veg exists, is analytic from ~R,u to ~ ,  and 
satisfies NaV(g)<oo, then V~ gl} exists, V d ' > 0  it is analytic as a 
function from ~R,e+u, to ~ ,  and it satisfies 

2 v NV+ d,({ g, gl }) ~ - 7  Na(g) NV(gl) (5.11) 
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Proof. Using the definition (4.1) of Poisson brackets, we immediately 
have 

II {g, gl }(~)11 so ~< Ih g'(ff)tl  IlV'~g!(OLl 

But, from Cauchy's inequality (see, e.g., ref. 22) we also have 

Sup IIg'(r ~ < 1  Sup Ilg(OII 

and (5.10) immediately follows. In order to obtain (5.11), notice that, by 
(5.6), we have 

Vn{g, gl}(X) = [-Xg, Xg,](x)  

= Xtg(X) Xgl(x) - Xit(x ) Xg(X) 

= {VOg, g, }(x)+ {g, V~gl }(x) 

so that the lhs of (5.11) is less than 

Sd+a'( {Vag, gl })+ Na+a,( { g, V~gl }) 

1 1 v <<- - ~  Na(Vag) NV+ a'(gl) + -~; U a+ a'(g) Ud(Vagl) 

From this (5.11) immediately follows. All the analyticity properties are 
straightforward. | 

We come now to the estimate of the solution of the homological 
equation. Let us bring into evidence a technical element of this estimate. 
The idea is to perform an average over a periodic orbit of the unperturbed 
system as in refs. 23 and 24. The relevant fact is that such an average can 
be performed in an intrinsic manner, without any reference to a coordinate 
system. This is particularly useful when studying the neighborhood of 
an elliptic equilibrium, for instance, as in the FPU model, where the 
unperturbed action-angle variables introduce an annoying singularity. 

kemma 5.3. Let ~: f#R,d~C be a C 1 function such that its sym- 
plectic gradient exists and is analytic over fqR, a. Then, the homological 
equation 

{h~, )~}(~) + Z(~) = ~(~) (5.12) 

has a solution given by 

z(o :=~ ~(a~,(~)) dt 

z(r :=-~I: tE ~(q~,(~)) - z ( ~ , ( r  & 

(5.13) 
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where T is the period of q~ in time. The symplectic gradients of Z and Z 
exist and satisfy 

NV(z) <~ NV(T) 
(5.14) 

NV(Z) ~< TNV(T) 

Proof. Denote g(~) := T ( ~ ) - Z ( ~ ) ,  with Z given by (5.13). Referring 
to the domain D of differentiability of �9 with respect to time, take ~ E D, 
then we have 

{h~, z}(~) = Z(qbt(~)) 
t = O  

dtlt=0 T o g(qb t+s(~))sds 

S dsg(~b'+'(~)) ds ,=o 

=g(~) 

Therefore (5.13) solves (5.12) on D. But it is easy to check that, for any 
g e CI(N, C) which admits a symplectic gradient, we have 

VO(go q5 )(#) = [q~;(~)]-~ (VOg)(~t(#)) 

(just use the smoothness hypothesis 2 of Section 4), so that 

which is continuous in the argument ~. It follows that {h~,z} is 
continuous on (#R,a. Since the two sides of (5.12) are continuous and 
coincide on the dense set D, they coincide everywhere. To obtain the 
estimate (5.14), remark that 

(~R, d 

tll I-~;(~)] -111-II(VOg)(~,(~))/I dt 

from which the conclusions immediately follow. | 
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We give now the following. 

Scheme of the Proof of Theorem 4. 1. With the choice above of the 
norms, and also using the two lemmas above, one can repeat almost 
literally the arguments of ref. 16, Sections 6-8 (see also ref. 9). In particular, 
one gets an explicit estimate for the generating sequence (see Theorem 6.1 
of the above reference) in the form 

with constants fl and q~ given by 

12~(r -  1) cof+ co o ~ = 2 ~  coj fl= 
co d co 

Here, r is the order up to which normalization of the Hamiltonian is 
carried on. This gives the complete proof of Theorem 4.1. | 

We come now to the proof of Theorem 4.3. We need two more 
technical estimates. The first one is a straightforward generalization of a 
preliminary result already proved, in a slightly different context, in ref. 16. 
We give here the statement, which can be easily proved along the lines of 
the proof of Lemma 10.3 of the paper above. 

Lemma 5.4. Let {Zt}t~>l be a generating sequence with 

fit 
NV(z') <~ T qb 

and let g be any analytic function; then for the s-th term (s ~> 1) of the 
sequence Tzg [see (5.1)] one has 

(e__ffff )s 1No(g ) (5.15) 
N ~ ( g , ) <<, qb + fl d 

The second technical estimate is given here with a detailed proof. 

Define E* as in the statement of Theorem 4.3. Then Lemma 5.5. 
we have 

{ #V -1 
U2d( 's) < E* (5.16) 

where fl is defined by (4.3), and r is the order up to which normalization 
of the Hamiltonian has been performed. 
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We start from the definition (5.5) of Ts, which, following ProoL 
ref. 16 (see p. 593), can be given the form 

~1 = f  
(5.17) 

1 
~'s = E - {z,, z ,  ,} + - -  {x~- ~, 1 -[- - -  ] ~ s _  1 

l=l S S S S 

Then, we look for a sequence t 5 such that 

Na,(T,)<~Etl,, s )  l 

where d~ := d+ ( s -  1)d/(r- 1). We shall also use the following notation: 

e(b 

So, using Eqs. (5.10) and (5.15), we obtain for this sequence the inequality 

" - l l ( r -  1) s - 1  s 1 E 1 Eo 
E~, ~< ~ s----d-- ECb~s- i/~g- 1 ,=1 +--29 - - ~  2 E ~  d + s - ~  2 d 

<--~ (r - l )Ef l l - l t l s  z+ #~-2 (E+  Eo) 
l 1 

Thus, we can define the sequence qs by 

q x = l  
(5.18) 

Eq~= ( r -1 )Ef l~ -~ t5  z + g ~ - 2 ( E + E o )  , s~>2 
l 1 

The rhs of the last equation can be rewritten, isolating in the sum the term 
with l =  1, as 

~, ( r -1)Ef l ' -b] ,  ,+(r--1)E~,_~ + p~-Z(E+ Eo) 
- l = 2  

-=-d fl ( r - - 1 ) E f l l - l t ] s  1 - l + # ~ # ~  l-2(E+Eo)+(r-1)Eqs_l 
/ = 1  

~#lEns ~ + - d ( r - 1 ) E n s  , e 

which holds for s/> 3. Here we used the obvious inequality 

ecP eq5 /~ 
- - +  fl + r--~- <~ r -  d e 
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which follows from the definitions above of p, #1, /~, and 4. So we can 
define a majorant 7/, for the sequence qs by putting 

d r / ~  7/1=1, E7/2= (rE+Eo), 7/s=--q~ 1, s>~3 
e 

Then it is easy to check that this sequence is bounded by the rhs of 
(5.16). II 

Scheme of the Proof of Theorem 4.3, By following the lines of the 
proof of Lemma 11.3 in ref. 16 one immediately gets the estimate 

/ # \ ,  1 

N2~(hs)<~E~re) 

Using this estimate, the proof of Theorem 4.3 can be easily completed. | 

6. PROOF OF THE T H E O R E M  ON THE FPU-TYPE M O D E L  

The proof of Theorem 2.1 depends on the following steps. The first 
step is the definition of the phase space. The second step is the choice of 
the domain f# in which perturbation theory will be developed; the form of 
the domain is strictly related to the form of the Hamiltonian, namely, the 
energy of the system: in fact, the domain will be such that, by conservation 
of energy, the solution of the equations of motion turns out to be trapped 
in it. The third step is the approximation of h + with a function h~o giving 
rise to periodic orbits, and the explicit computation of the constants COo, 
COy, #. The fourth and final step is the application of Corollary 4.2. 

Concerning the phase space, our goal is to characterize ~ as the space 
of states with finite energy and corresponding to configurations with fixed 
ends. To this end, we start by defining 

:=12• 

where in the case of finite n, l 2 and A 2 coincide with ~", while in the case 
of infinite n, l 2 is the space of square-summable sequences, and A 2 is the 
closure of sequences with Xo = 0 and finite support contained in N + in the 
norm 

lixll~0~:= Z Ixj- xj 112 
j~>l 

To complete the definition of ~ ,  we need to introduce a norm. The natural 
choice would be to define the norm of a point ~ ~ ~ as the square root of 

" lyjl2 + 1 ~(~) :=j=IZ ~ j=l ~k. Ixj-xj_ll 2 (6.1) 
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However, it is a better procedure to make use of the linear transformation 
(2.4) to normal modes, with new variables p, q. By the way, in the case of 
an infinite system this transformation takes the form 

2k ) 1/2 sin(jfl) + 
XJ=~.2 f~ 12k_mj09~-2,] ]c~ [m2-I-m2+2mlm2cos(2fl)]t/4qfi- dfl 

In terms of these variables we define the norm of a point ~ as 

n/2 n/2 

II~H 2 ~= 2 �89176 + ~ �89176 2) 
l = l  l = 1  

(6.2) 

where co is given by (2.6). We remark that this norm is equivalent to the 
norm (6.1) given by the harmonic energy, with equivalence constants 
independent of the number n of degrees of freedom; in fact in terms of the 
variables p, q the harmonic energy is nothing but 

n/2 

e(~) = E 
_+ 

l = 1  

l ( I p ?  12 -4- (coF)2 Iq? 12) 

and the relation with the norm (6.2) is given by 

(2 ml+ 1 (1+ § m .  (6.3) 

In particular, taking into account (2.8) and the hypothesis/~ < 1, one has 

(1 +2-14)  -1 ~(~)~< 1l~ll2 ~< (1 + 2  15) g(~) (6.4) 

Concerning %,  we simply put % = ~,  so that we also have f f  = ~.  
]-'he definition of the domain is almost trivial: the domain ~f is the 

origin, namely ff = {0}; the complex extended domain turns out to be 

~R.o := B(0, R) 

namely the ball (in ~ c )  centered in 0 and having radius R. We also choose 
d =  1/4. 

Choosing R small enough will ensure that all the orbits with initial 
harmonic energy sufficiently small do not escape from (~R,2d = B(0, R/2) for 
all times. 

In order to apply the theory of Section 4, we split the Hamiltonian 
(2.1) as 
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where 

n/2 
h~(~) :=  Z 1 _+2 ~(/~l -'k o)2q/+2) 

l=1 
n/2 

~(~1 := ~ 1 (p?Z+~?2q?21  
1--1 

f(~) := fl(~) + f2(~) 

,/2 
f l ( ~ ) ~ -  E 1 2 +2 ~ (6c~ qt 

1--1 
n + l  

fz(r := ~ ~p(xj--xj 1) 
j --1 

(a~O,) ~ : =  ~07 ~ --  (2) ~ 

Here we used the variables (y, x) or (p, q) according to convenience. Due 
to our choice of the norm, it is clear that assumption 5 of Theorem 4.1 
holds (the differential of the unperturbed flow has norm equal to 1). 

The estimate of the constants (.0f and # relies on a quite elementary 
estimate of the symplectic gradient of f2. This estimate is the key step in 
order to prove Theorem 2.1, and is reported below in the proof of the 
following result. 

I .emma 6.1. Using the above notation, we have 

NV(fl)+NV(f2)<~oof, NV(h) ~< ~O;ax 

with 

2 ~ k/m 2 
~of =(1 + 2 - U ) k - - ~ l + - - c o  

where Y is as in Theorem 2.1; moreover one has 

~R ~Om~7 # <  192=e (1 + 2 - x ' ) ~ z ~ + - - ~ - j  (6.5) 

Proof. We begin by evaluating the norm of the symplectic gradient 
of f2. Notice that the yj component of Vaf2(~) is 

~f~(x) 
X 8Xj --(t9 ( j + l  X j ) - - q Y ( X j - - X j - - 1 )  
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while its xj components vanish; therefore, using the definition of norm 
(6.2), and the equivalence relation (6.4), we have 

IlVof2(ff)[t 2 < (1 + 2 -15) g(gnf2(~)) 

n+l 1 
= ( 1 + 2  15)j E=I ~mJ [(p'(Xj-Xj 1)-(tg'(xJ+l-xj)[2 

Using Iq~'(x)l < ~lxl  2, we have 

/[V~f2(~)112 < (1 + 2 ~s) 4y2 
I x j - x s _ l F  4 

j= 1 2mi 

< ( I +  2- ' s )  4y2 (kn~l  )2 
k2m~ \ 2 j =  1 Ix j -x j - l l2  

4(1+2_11)  4y2 
kXrn~ 11 ~ 114 

4y2 4 
4 ( 1 + 2  H)~-~m R 

Concerning f l ,  we have 

l n/2 [1~112 < (k/com22 R 2 
= I&ot ql co2 

NVnfl(~)]t2 2 ~ 2 +12<max 6co4 )2 
l=2 l 

from which the value of o f  is easily deduced. The estimate of co o and the 
calculation of # are then trivial: just notice that, by (2.9) and by/~ < 1, we 
have Omax/(2co)< 1/(48e). | 

With the settings and the lemma above, we can apply Corollary 4.2, 
and conclude that Ih~(t)-ho)(O)l is bounded up to the exponential time 
T,, provided the orbit does not escape from the domain ~R,2u. We show 
that R can be determined in such a way that the escape time is actually 
infinite, thanks to energy conservation. Indeed, remark that the condition 

e B(0, R) can be expressed in terms of harmonic energy, because of the 
equivalence of the norm I1~II and the harmonic energy g(~) stated above. 
By conservation of energy, on the one hand one has 

I~(t)l < Ig(O)l + If2(0)l + [f2(t)l (6.6) 

and on the other hand, one also has [f2(x(t))l <~ YR3/(3k3/2), so that, 
by (6.4), we get 

15) 2~-R3 
H~(t)ll < (1 + 2-1') g(t) --< (1 + 2-*S)go + (1 + 2-  
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If the rhs of this expression is less than R2/4, then we certainly have 
~(t) e ~R,1/2. So, we obtain the inequality 

(1 + 2 -15) 2/'-R3 R2 
3k 3/2 4 + (1 +2-15)g~ ~<0 (6.7) 

which has solutions only if 

3 k 3 1 
"~6o~<27 [2 1 + 2  -15 (6.8) 

This is satisfied in view of (2.8). We satisfy also inequality (6.7) by taking 

R =  [8go(1 + 2  15)]1/2 

Inserting this value in (6.5) and using it to estimate the rhs of (4.5), one 
concludes the proof of the theorem. 

7. PROOF OF THE ANALYTIC THEOREM ON WEAKLY 
COUPLED ROTATORS 

First remark that our choice of (~, cg o, ~ )  (see Sections 3 and 4) 
satisfies axioms (e) and (/3) on the phase space: the proof is straighforward. 

Now we prove Theorem 3.2; therefore we fix our attention on the 
Hamiltonian (3.7). Our aim is to choose a domain, to give the Hamiltonian 
a form suited for the application of Corollary 4.4, and to compute the corre- 
sponding constants. After application of the corollary, we shall estimate the 
escape time from the domain. 

We start with the definition of the domain. Denote 

G =/3(e/2) 1/2 (7.1) 

where/3 is defined by (3.8); we put 

~:={(J,~)~:hR(~)<<-a2}, ~= 0 ~,(~) 
t e  [0, T]  

with h a defined by (3.2); notice that, if G 2 ~> 2e, this is an unbounded domain, 
because no bound is imposed on the norm of the angles (see Section 3). 
The domain (r is extended in the complex as explained in Section 4, via 
another positive parameter R, which will be fixed later (see (7.2)). 

Now we split the perturbation into a part which is already in normal 
form with respect to the unperturbed system and a remaining part which 
will be the actual perturbation. Precisely, we define 
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h (J, := y. oo,J, 
l t Z  

j2 
l /~(J, ~) :=  Z ~+e ~ [1-cos(~b,-~b,_t) ] 

l t Z  l r  

f(~b) :=e 2 [1-cos(~b,-~bz_l) ] 
I t  S*  

where S* is again the set 

S* := {ieZ:  co/r 1} 

According to our abstract scheme, h~ is the unperturbed system, and /~ 
commutes with it, while f plays the role of the perturbation. This form of 
the splitting, in particular for the ~b-dependent terms, is crucial in order to 
get a good estimate of the deformation induced by the canonical transfor- 
mation. In turn, this will play a fundamental role in controlling the escape 
time. 

We come now to the computation of the constants. For clarity, we 
give the result by stating a few lemmas. 

L e m m a  7.1. We can choose 

n* x/2 exp[R(2/e) 1/2 ] e 
~ Rx /7  

ProoL The J/component of Vaf  is given by 

~ sin(~b, - (5i i - -1  , - 6 ,  ) 
i t S *  

where 6~ is the Kroneker symbol; so we have 

z ,Iz ]2 
s 2 /3 

IIV f(Qll = sin(~bi-~bi_~) ( 6 ~ - ~  1) 
l~77  I - i ~ S *  )2 

la l -6 t  I <~_iexp[ZR(2/~)l/2 ] • i i 1 
l t Z  i * 

2 2 

<~-~iexp[2R(2/g) 1/2] y' n* 2 (6~-61 ~)2 
l t Z  i t S *  

g 2 

<<.~-iexp[2R(2/e)l/2] 2n* ~ }-" [(61)2+(61-1) 2] 
l t Z  i t S *  

822/71/3-4-16 
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where we used Schwartz's inequality. From the above estimate the thesis 
easily follows. ] 

The first use of this lemma is in determining the parameter R con- 
trolling the size of the complex extension of the domain ~. Since co F is 
proportional to exp[R(2/e)l/2], is is natural to choose R proportional 
to el/2. For  simplicity, we take 

R = (7.2) 

so that we get 

We come now to the calculation of (n o . First of all, remark that, since 
/~ commutes with ha, one has h(q~,(~))=/~(~); from this one easily deduces 

Sup ItV~N(C)ll = Sup IIV~(C)II 

We state now two simple lemmas. 

Lemma 7.2. We have 

Proof. 

Sup e ~ Ii-cos(qS, I ~ , _ , ) l ~ e  (7.3) 
I1~11 ~ < R  , ~ z  

Using the Taylor expansion of the cosine, we have 

~ I 1 - cos(06z- ~z_ 1)1 
l e Z  

1 

j > l  

~<~ E I~,- ~,-~1 ~ 

j ~ > l  

which, due to (7.2), is less than the rhs of (7.3). I 

We remark that, as a byproduct of the proof of this lemma, one also 
concludes that Hamiltonian (3.2) is analytic. 
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Lemma 7.3. We have 

< ) Sup ~ ~ II-cos(O,-~, 1)1~<~ T+2~+1 
q~ ~ N,~,0 f e Z  

ProoL Denote for simplicity q~k := ~bk-- ~bk_ ~ with 
ak :=Cd--Ct~-l,  with e d e N ,  Ilell] ~<R. Then compute 

and 

e ~ I i -cos(@z+cq) l  
I s Z  

l ~ Z  

l ~ Z  

l1 - cos 4t cos at + sin 4t sin c~l[ 

l1 - cos @t (cos ~ l -  1 + 1)1 + e ~, Isin ~Pl sin cql 
I ~ Z  

~ ~ I1 - cos  0,1 + ~ ~ Icos 4,1 I1 - cos  ~,1 
l ~ Z  l~:Z 

(e~z \1/2/ \1/2 + e  [sin ~//112) ( 2 [sin cq[ 2) 
l / \ l ~ Z  

,?z"-c~ o,, cos2 ,, 

~<G2+e+  l + C h  R (2e)l/2G 

From this, Using (7.1), the thesis follows. | 

We are now able to calculate COo: 

L e m m a  7.4. We can take 

(,00 :---- 8]~ ( ~ )  1/2 (7.4) 

ProoL Denote again Ol := ~bt-q~l 1, now with ~b E (qR, o. We have 

IIV~/~(~)l[ 2~< 2 =41 sin2 4,1 + 2 ~(Pz--P'-l)2+2e Sup 
" tez z l  z~z 212 

2e 2 8~ I Ptl2 
~<~- ~ I(1--cos 4,)(1 +cos  O,)l +- I - ,~z  

l~z 2I 
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but the first term of this sum is less than 

2~ 
7 S u p { I 1  +cos~, l}  ~ Z [1-cos~&,l 

IEZ 

< 2~ 7 2 
7 ( 1 + e ) ~ 3  

where we used f l > l .  From this, using Eq. (7.2), the thesis easily 
follows. | 

The last lemma gives the values of E, E0, and E*. 

L e m m a  7.5. We can take 

E=8n*e, Eo = 4~fl 2 , E* = (8n* + n~-~-fl) e 

ProoL Using the result of Lemma 7.3, one immediately gets the 
values of E and E o. The value of E* is obtained by using the trivial 
inequality 

(~3~1/2 1 1 
26e2fl ~k/-~j < 6/2 < 

which follows from the definition (3.9) of/z. | 

We give now the following result. 

Proof of  Theorem 3.2. Recall the definitions (7.2) of R and (7.1) of 
ft. The definition (3.9) of # together with the hypothesis # <  1 of the 
theorem ensure that the constants COy, o0 as given above and the constant 
v in the statement of the theorem satisfy the hypotheses of Corollary 4.4. 
The straightforward application of the corollary gives the estimate 

,h~(t)-h~(O), ~< 6g (8n* +n~-~ fl) (7.5) 

for Itl ~< min(T0, T,). We show now that the choice (3.8) for the parameter 
fl implies T O > T, .  By the definition o f / / o n e  has hR(~(0)) <~ G2/2; but by 
the conservation of energy we have 

hR(((t) ) <~ hR(((O)) + [ho~(t) -- ho,(O)l 
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and so also 

hR(r + Ih~(0-h~(0)[ 

Using (7.5), we can bound the rhs of this relation by 

If this is less than G 2, then we surely have ~(t) e a~ c N. So, using (7.2) and 
(7.1), we obtain that this is true, provided that/3 satisfies the inequality 

which therefore ensures T o > T.  : we replace it by the stronger condition 

/~ ~> 12n* (7.6) 

The choice (3.8) for/~ satisfies the latter condition. This concludes the proof 
of the theorem. | 

8. PROOF OF THE G E O M E T R I C  T H E O R E M  ON W E A K L Y  
C O U P L E D  R O T A T O R S  

First, we denote by 

the frequencies corresponding to the vector J. Then we use the Dirichlet 
theorem in order to approximate this set of frequencies with a completely 
resonant vector: let ~7 be the maximum among ~ol,...,con, and let Q i> 1 be 
an arbitrary real number; according to Dirichlet theorem there exist 
kl ..... kn ~ N and q e N with q ~< Q, such that 

og ._  vkj  
J q <~ qQ1/(n 1) 

So, in terms of points of the phase space, we can say that corresponding 
to the point J there exists a resonant point (j(r), 0 ) e ~  such that (i) the 
corresponding unperturbed orbit is periodic, with frequency 

v : = -  (8.1) 
q 



604 Bambusi and Giorgilli 

and (ii) it is near (J, 0): 

i 
rl (J('~, o) - (Z  O)lf ~ ~ (nlv2) 1/2 Q1/(n- 1) 

So, if we denote by ~1 the difference between the initial datum (jo, ~bo) and 
(J, 0) by the triangle inequality we have 

1 { h R [ ( j o ,  (~0) _ (j(r), 0)3 }1/2 ~ [hR(~I )] 1/2 q_ (/7iV 2) QI/(,-,) 

It follows that we can apply Theorem 3.2 with v given by (8.1), n* =2n, 
and fl given by 

fi:=max{2[hR~l---~)]l/R+2x/-s ~ 1), 24n} 

Here, we still have the free parameter Q; to fix it, we shall use the explicit 
expression (3.9) of # as a function of v and/?, and optimize the choice of 
Q in order to make # as small as possible. Thus, we calculate 

//,<2533[- ~ ( g  "~1/27 
Q~/-7-1)+(26n+fl')k~v2J J 

k 

~< 2'33 x/-n [ Q i/(,- 1--------~ + ( ~  + 26, ,~)/~Q] (8.2) 

where 

s ,~1/2 
:=  \ ~ j  , 

Minimizing with respect to Q, we get 

~t < 2533x/_~ i (~nn + 2 6 ~  ) /~;  1/, 

Furthermore, using (3.6), we can estimate /3 by 

< 2 s , f n ~  ~1-~/" 
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We also have 

I 71/2 
II&oll ~< 4 v 2 +  ~ (2coj)2 |  < 4 v ( n * )  ~/2 

je  S* A 

Replacing the expressions above for #, fi, and I]&oll in the statement of 
Theorem 3.2, we find that the result of Theorem 3.1 easily follows. | 
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